Edible bird’s nest (EBN) supplementation on cognitive function over 2 generation mice

EBN is well known as a natural food product rich in glycoproteins, carbohydrates and minerals. In mammals, the highest absorption of EBN occurs in the brain where it participates as an integral part of ganglioside structure in synaptogenesis and neural transmission. The active compound from EBN is a key component of mammalian milks oligosaccharides and important nutrient during periods of rapid brain growth particularly for preterm infant.

While EBN supplementation has been associated to enhance brain functions in infants, the effects of multiple generations of EBN on cognitive function are still remain unclear.

The present study aims to determine the effects of EBN supplementation on cognitive function of trans-generational mice.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Content of Sialic Acid (%)</th>
<th>1. Edible Bird Nest North</th>
<th>3.15 ± 0.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Edible Bird Nest South</td>
<td></td>
<td>2.97 ± 1.63</td>
<td></td>
</tr>
<tr>
<td>3. Edible Bird Nest Borneo</td>
<td></td>
<td>1.17 ± 0.10</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgement:
NKEA AGRICULTURE (EPP#2)
NKEA Research Grant Scheme (NRGS)
CoE Swiftlet (6371401)

Corresponding author:
Dr Hafandi Ahmad, hafandi@upm.edu.my
Mr Mohd Adha P Rameli
Faculty of Veterinary Medicine