INTRODUCTION

- Increased oxidative stress by hyperglycemia is a major cause of vascular complications in diabetes [1].
- Edible Bird’s Nest is traditionally consumed among Asian for its nutritional value [2].
- Previously it has been shown to have anti-oxidative, anti-inflammatory and may improve insulin resistance [2].
- However, it’s role in improving endothelial dysfunction due to hyperglycaemia is yet to be elucidated.
- The present study examined the protective effect and mechanism of action of the hydrolyzed aqueous extract of edible bird nest (HBN) against high glucose (HG)-induced endothelial dysfunction and oxidative damage in mouse aorta and human umbilical vein endothelial cells (HUVECs).

RESULTS & DISCUSSION

CONCLUSION

- HBN protects endothelial cells against high glucose induced-oxidative damage by inhibiting oxidative stress, thus elevating NO availability and restores endothelial function in isolated mouse aorta and HUVECs.
- This result demonstrates the potential role of HBN in preserving endothelial function and management of micro and macrovascular complications induced by hyperglycaemia/oxidative stress in diabetes.

REFERENCES

METHODOLOGY

- Cable treatment
- Isolation of aorta
- Organ culture
- Wire myograph

RESULTS 1

Figure 1: The level of A) reactive oxygen species (ROS) and B) nitric oxide (NO) after treatment with normal glucose (NG, 5 mM), high glucose (HG, 30 mM), mannitol (25mM), H2O2 (200μM), calcium ionophore (5μM), Hydrolyzed Bird Nest (HBN, 30 μg/ml), sialic acid (SA, 20 μg/ml), Apocynin (10 μM) and Apocynin (20 μM) for 48 hours. Results are mean±SEM of 3 experiments. ** p < 0.01 and *** p < 0.001 compared to control; # p < 0.05 and ## p < 0.01 compared to HG.

RESULTS 2

Figure 2: The effect of isolated aorta from C57BL/6J treated with normal glucose (NG, 5 mM), high glucose (HG, 30 mM), Hydrolyzed Bird Nest (HBN, 30 μg/ml), sialic acid (SA, 20 μg/ml), Apocynin (10 μM) and Apocynin (20 μM) for 48 hours in (A & B) Ach-induced endothelium-dependent relaxation (EDR). Results are mean±SEM of 6 experiments. *p<0.05 compared with NG, #p<0.05 when compared with HG. No significant differences were observed by the various treatments on SNP-induced endothelium-independent relaxation (not shown).

RESULTS 3

Figure 3: Western blot and quantitative data showing proteins in HUVECs treated with normal glucose (NG, 5 mM), high glucose (HG, 30 mM), Hydrolyzed Bird Nest (HBN, 30 μg/ml), sialic acid (SA, 20 μg/ml), Apocynin (10 μM) and Apocynin (20 μM) for 48 hours. Results are means ± SEM of 3 separate experiments. *p<0.05 and ** p < 0.01 compared to control; # p<0.05, ## p<0.01 and ### p<0.001 compared to HG.

ACKNOWLEDGEMENTS: MINISTRY OF AGRICULTURE GRANT [GA001-2017]